Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wildfires act as potent agents of weathering and erosion, triggering the mobilization of dry ravel sediment and often resulting in temporary increases in sediment transport rates and associated debris-flow hazards. Existing hillslope sediment flux models fail to adequately capture the complex dynamics between erosion and deposition, particularly after wildfires and in landscapes dominated by processes such as bioturbation, tree falls, or other disturbances. To better understand bioturbated dry ravel and subsurface soil properties, we seek to study two hillslopes affected by the 2020 Santa Clara Unit Lightning Complex Fire at the University of California Blue Oak Ranch Reserve near San Jose, CA, by employing a novel application of short-lived radionuclides to characterize dry ravel transport processes. We used gamma spectroscopy on soil cores and recently excavated material from squirrel burrows, sampled along transects from the channel to the ridge on two opposing hillslopes to determine the concentrations of short-lived meteoric radionuclide 210Pb. Our initial findings indicate that the excess 210Pb in soil core sediment varies from the hillslope ridge to toe. In the ridge soil cores, concentrations initially increase within the top 5 cm, followed by a sharp exponential decline with depth. However, the toe soil cores show a sharp exponential decrease in concentrations from the soil surface to ~35-45 cm depth. The toe cores have a concentration of ~ 80 Bq/kg near the surface, while the ridge cores have a much lower concentration of ~ 30 Bq/kg. Based on this preliminary data, we infer that deposition of lower-concentration soil excavated from squirrel burrows leads to mixing of the upper soil layers. In contrast, the well-preserved exponential decay profile and higher surface concentrations at the steeper toe locations indicate less mixing overall. These initial findings warrant further examination of sediment characteristics at various depths through continued gamma spectroscopy and comparative analysis of shallow subsurface structure from ground-penetrating radar. These observations enhance our understanding of the roles of surface gradient and bioturbation in post-fire steepland sediment dynamics.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract. Post-fire changes to the transport regime of dry ravel, which describes the gravity-driven transport of individual particles downslope, are poorly constrained but critical to understand as ravel may contribute to elevated sediment fluxes and associated debris flow activity observed post-fire in the western United States. In this study, we evaluated post-fire variability in dry ravel travel distance exceedance probabilities and disentrainment rates in the Diablo Range of central coastal California following the Santa Clara Unit Lightning Complex fire of August 2020. Between March 2021 and March 2022, we conducted repeat field experiments simulating ravel with in situ particles (3–35 mm diameter) on a range of experimental surface gradients (0.38–0.81) on both grassy south-facing slopes and oak woodland north-facing slopes. We characterized post-fire evolution in particle transport by fitting a probabilistic Lomax distribution model to the empirical travel distance exceedance probabilities for each experimental particle size, surface gradient, and time period. The resulting Lomax shape and scale parameters were used to identify the transport regime for each subset of simulated ravel, ranging from “bounded” (light-tailed or local) to “runaway” (heavy-tailed or nonlocal) motion. Our experimental results indicated that as vegetation recovered over the first 2 years post-fire, the behavior of small particles (median intermediate axis of 6 mm) became less similar across the experimental sites due to different vegetation structures, whereas medium and large particles (median intermediate axes of 13 and 28 mm, respectively) exhibited a general transition from more runaway to more bounded transport, and large particles became less sensitive to surface gradient. All particle sizes exhibited a decrease in the length scale of transport with time. Of all particle subsets, larger particles on steeper slopes were more likely to experience nonlocal transport, consistent with previous observations and theory. These findings are further corroborated by hillslope and channel deposits, which suggest that large particles were preferentially evacuated from the hillslope to the channel during or immediately after the fire. Our results indicate that nonlocal transport of in situ particles likely occurs in the experimental study catchment, and the presence of wildfire increases the likelihood of nonlocal transport, particularly on steeper slopes.more » « less
-
The protection of headwater streams faces increasing challenges, exemplified by limited global recognition of headwater contributions to watershed resiliency and a recent US Supreme Court decision limiting federal safeguards. Despite accounting for ~77% of global river networks, the lack of adequate headwaters protections is caused, in part, by limited information on their extent and functions—in particular, their flow regimes, which form the foundation for decision-making regarding their protection. Yet, headwater streamflow is challenging to comprehensively measure and model; it is highly variable and sensitive to changes in land use, management and climate. Modelling headwater streamflow to quantify its cumulative contributions to downstream river networks requires an integrative understanding across local hillslope and channel (that is, watershed) processes. Here we begin to address this challenge by proposing a consistent definition for headwater systems and streams, evaluating how headwater streamflow is characterized and advocating for closing gaps in headwater streamflow data collection, modelling and synthesis.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract The creation of fractures in bedrock dictates water movement through the critical zone, controlling weathering, vadose zone water storage, and groundwater recharge. However, quantifying connections between fracturing, water flow, and chemical weathering remains challenging because of limited access to the deep critical zone. Here we overcome this challenge by coupling measurements from borehole drilling, groundwater monitoring, and seismic refraction surveys in the central California Coast Range. Our results show that the subsurface is highly fractured, which may be driven by the regional geologic and tectonic setting. The pervasively fractured rock facilitates infiltration of meteoric water down to a water table that aligns with oxidation in exhumed rock cores and is coincident with the adjacent intermittent first‐order stream channel. This work highlights the need to incorporate deep water flow and weathering due to pervasive fracturing into models of catchment water balances and critical zone weathering, especially in tectonically active landscapes.more » « less
-
Abstract Quantifying evapotranspiration (ET) is critical to accurately predict vegetation health, groundwater recharge, and streamflow generation. Hillslope aspect, the direction a hillslope faces, results in variable incoming solar radiation and subsequent vegetation water use that drive ET. Previous work in watersheds with a single dominant vegetation type (e.g., trees) have shown that equator‐facing slopes (EFS) have higher ET compared to pole‐facing slopes (PFS) due to higher evaporative demand. However, it remains unclear how differences in vegetation type (i.e., grasses and trees) influence ET and water partitioning between hillslopes with opposing aspects. Here, we quantified ET and root‐zone water storage deficits between a PFS and EFS with contrasting vegetation types within central coastal California. Our results suggest that the cooler PFS with oak trees has higher ET than the warmer EFS with grasses, which is counter to previous work in landscapes with a singule dominant vegetation type. Our root‐zone water storage deficit calculations indicate that the PFS has a higher subsurface storage deficit and a larger seasonal dry down than the EFS. This aspect difference in subsurface water storage deficits may influence the subsequent replenishment of dynamic water storage, groundwater recharge and streamflow generation. In addition, larger subsurface water deficits on PFS may reduce their ability to serve as hydrologic refugia for oaks during multi‐year droughts. This research provides a novel integration of field‐based and remotely‐sensed estimates of ET required to properly quantify hillslope‐scale water balances. These findings emphasize the importance of resolving hillslope‐scale vegetation structure within Earth system models, especially in landscapes with diverse vegetation types.more » « less
-
Abstract Coastal mountain rivers export disproportionately high quantities of terrestrial organic carbon (OC) directly to the ocean, feeding microbial communities and altering coastal ecology. To better predict and mitigate the effects of wildfires on aquatic ecosystems and resources, we must evaluate the relationships between fire, hydrology, and carbon export, particularly in the fire‐prone western United States. This study examined the spatiotemporal export of particulate and dissolved OC (POC and DOC, respectively) and particulate and dissolved black carbon (PBC and DBC, respectively) from five coastal mountain watersheds following the 2020 CZU Lightning Complex Fires (California, USA). Despite high variability in watershed burn extent (20–98%), annual POC, DOC, PBC, and DBC concentrations remained relatively stable among the different watersheds. Instead, they correlated significantly with watershed discharge. Our findings indicate that hydrology, rather than burn extent, is a primary driver of post‐fire carbon export in coastal mountain watersheds.more » « less
An official website of the United States government
